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A B S T R A C T   

Large Language Modeling (LLM) is ubiquitous in the healthcare industry guiding clinical decisions. With the 
increase in demand, we must proceed with caution in the AI industry. In this study, we evaluated the accuracy of 
the Random Forest model in comparison to other similar models. From the 2005 to 2010 National Health and 
Nutrition Examination Survey (NHANES) dataset, we assessed if there was a relationship between depression and 
hypertension and if depression predicted hypertension. Depression was determined using the Patient Health 
Questionnaire (PHQ)− 9 ≥ 10. Hypertension was determined by taking the average of three systolic pressure 
readings that were elevated. Current smoking was determined by self-reported data. We tested several Random 
Forest models, compared with logistic regression, naïve Bayes, decision tree model and assessed these for ac-
curacy. The percentage of the population with diabetes was 7.7%. We found that in comparison to logistic 
regression (87.8%), naïve Bayes (84.6%), and decision tree model (89.3%), the Random Forest model (98.4%) 
was considered most accurate. We also found that out of all the variables, according to the Gini impurity index, 
employment (150) received the highest score in relative importance. The next highest score was depression 
(140). This system demonstrates the importance of using traditional AI systems such as Random Forest modeling 
in conjunction with LLM. ChatGPT and LLM’s must be further understood to integrate with classical machine 
learning techniques to make further advances in healthcare. LLM’s have been mobilized to write history and 
physical assessment, extracting drug names from medical notes, and condensing radiology reports. Abstraction of 
medical records and other applications in healthcare can further be enhanced by using the full potential for AI 
systems such LLM.   

Introduction 

The future is being revolutionized and evolving with the advent of 
Large Language Modeling. Chat Generative Pre-trained Transformer 
(ChatGPT), a chatbot created by OpenAI, has become accessible to the 
general public—opening the door to many possibilities that have 
traditionally been considered unfathomable [1,2]. The growth of this 
arguably disruptive technology has been unprecedented and has been 
one of the fastest growing internet applications in history. Out of all the 
types of machine learning, ChatGPT interacts with the user in a similar 
way to human conversation and, on the surface, has been touted to 
outperform all machine learning techniques [3]. A multi-disciplinary 

approach can inform the public about the positive applications of 
Large Language Modeling (LLM) and some applications that require 
further investigation. ChatGPT has seen rapid growth and widespread 
use. In fact, ChatGPT exceeded 100 million users within a couple of 
months of the November 2022 release [3]. While vast swaths of the 
general public and researchers only know about AI through the chatbot 
ChatGPT, other individuals do not quite grasp the complexity of this 
powerful AI system [1,2]. To complicate matters, due to the popularity 
of this technology, there is a lot of misinformation that can be found on 
the internet. 

With the advent of LLM with a user-friendly interface, ChatGPT has 
become a common business and household word. As LLM evolves, such 
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comparisons will become increasingly crucial in understanding the 
strengths and applications of different models in this rapidly advancing 
field [4,5]. The models GPT-4 (similar features as ChatGPT—but many 
times faster and cost the company $4.6 million), Google Bard and Meena 
(trained on human to human interactions from public-domain social 
media), LLaMA (Large Language Model Meta AI), Flan-UL2 (Google 
Research), and BLOOM (BigScience Large Open-science Open-access 
Multilingual Language Model) vary significantly in their number of 
parameters, training data, training objectives, special features, and 
accessibility. Take for instance, BigScience Workshop (BLOOM’s parent 
company), uses 176 billion parameters for the LLM to understand the 
context. This extensive parameter range enables BLOOM to discern 
intricate linguistic patterns, resulting in precise and relevant text gen-
eration. There are many more that have not been included. 

Another perspective is understanding LLM from the perspective of 
neural networks or deep learning [6,7]. Due to the billions of parame-
ters, LLM can process many types of information all at once. The pa-
rameters in a LLM are similar to the weights in a standard neural 
network. In both LLMs and neural networks, these parameters are nu-
merical values that start as random coefficients and are adjusted during 
training to minimize loss. This allows for the simultaneous measurement 
of more conditions. 

Some academicians are quick to criticize ChatGPT as a way to 
potentially use this technology to complete writing assignments, 
exclusively through plagiarism. However, in essence, there are many 
deep learning applications in generative AI. For example, sentiment 
analysis can provide quick insight about the nature of the writing as 
“positive”, “negative”, or “neutral.” During the height of the COVID-19 
pandemic, previously, we conducted an analysis of the patient family 
visitation instructions for hospitals and how unwelcoming (negative 
sentiment) some of the instructions were. 

Instructors quickly condemn this as a place where students can 
plagiarize using ChatGPT without having to conduct their own research. 
while not acknowledging what all of the positive applications that this 
new technology has made possible. In the academic world, a universal 
alarm bell rings passing judgment—not giving this technology another 
thought. On the contrary, through a multidisciplinary approach, this 
technology should be embraced. 

In order to protect and help vulnerable populations, LLM should be 
applied to social determinants of health (SDOH). Collecting data on the 
SDOH requires a thorough understanding of how medical records can be 
extracted and abstracted for information. For instance, understanding 
the connection of healthcare access and disease processes can allow 
improved screening questions and text prediction that are based on 
training data from previous responses. Even though many patients are 
screened for social determinants of health, having a data abstraction 
method through LLM can allow for a more complete picture of the pa-
tient population within a certain geographic area. This allows for 
informed screening questions rather than standardized scales. 

The full potential is only understood when the complex interactions 
between social determinants of health and the disease states include 
LLM applications for many disorders such as acute coronary syndrome, 
opioid use disorder, epilepsy, and asthma [6]. There have been other 
applications in e-health and even plastic surgery. One example is where 
LLMs can be used for clinical note summarization, clinical entity 
recognition, and extracting ICD-10-CM Codes. These are the capabilities 
of the healthcare-specific large language models by John Snow labs and 
have a high success rate at 76% [7]. 

One area that is expanding in healthcare is natural language pro-
cessing to “read” the narrative of the chart and abstract pertinent in-
formation. In order to detect medical errors and locate discrepancies 
between diagnosis and treatment, one can ensure a more accurate 
clinical picture [7,8]. Another example is to give LLM a PubMed abstract 
and ask about what the key results were gleaned. This way healthcare 
workers do not have to waste time unnecessarily having to read the 
whole article. Using random forest, researchers and trained 

professionals can create classifiers according to the training information 
provided from LLM processed chart abstraction. Similarly, information 
about housing access can be collected from medical records and 
appropriate resources can be provided to improve all the domains in 
social determinants of health [9,10]. However, the question that re-
mains is that in a clinical setting, is the complete information being 
accurately presented when the chart information is being summarized 
by an LLM. After all, much of the information that will be used to treat 
patients is built from training information that has already been pro-
vided, which may be incomplete. 

Large Language Models are one such supervised learning model is 
the random forest models. Random Forests and Neural Networks are 
different in that Neural Networks usually improve from large amounts of 
data and continuously improve accuracy, while Random Forests often 
have little performance gain at certain levels of data. Both Random 
Forest and LLM are considered machine learning. However, this is where 
the similarities end. Random forest is considered traditional machine 
learning, whereas LLM is considered exclusively deep learning. How-
ever, Random Forest is used as a classifier, and is of optimal value in the 
field of healthcare. Large Learning Models are types of deep learning 
such as neural networks. 

As LLM technology expands tremendously, the world moves with 
caution before completely accepting the possibilities. This model com-
bines ensemble learning methods with the decision tree classifier. 
However, it is not fully understood how Large Language Models may 
enhance existing machine learning models such as random forest, if at 
all. In this research study, we create Random Forest models and compare 
this to existing LLMs in order to build improved predictive models in 
healthcare. 

Methods 

A random forest classifier can be considered an integrated classifi-
cation algorithm and comprised of individual decision trees. To optimize 
predictive accuracy, randomization of predictor variables along with 
bootstrap aggregation was utilized. The 2005–2010 nationally repre-
sentative National Health and Nutrition Examination Survey (NHANES) 
was administered to all noninstitutionalized individuals and conducted 
by the National Center for Health Statistics. The systolic blood pressure 
was calculated by a mean of three measurements of ≥ 130 mm Hg. 
Depression was defined by the Patient Health Questionnaire-9. This is a 
nine-item screening instrument that asked the frequency of depressive 
symptoms in the past two weeks. A cutpoint of ≥ 10 was considered 
positive for clinically relevant depression. Other covariates include 
healthcare diagnosed patient reported positive response to diabetes, by 
asking participants “Have you ever been told by a doctor or health 
professional that you have __.” Gender, sleep trouble, and employment 
were considered important covariates. Sleep trouble was determined by 
the question “Have you ever told a doctor or other health professional 
that you have trouble sleeping?” (yes/no). For those individuals that 
said yes, the person was considered to have trouble sleeping. 

From individual level NHANES data a random forest model was 
built. The random forest model was split into 80% training model and 
20% testing model. The train-test split is a model validation procedure 
that reveals how the model performs on new data. The input was mtry =
3 since the default in the statistical software is the square root of the total 
number of predictors for classification problems. The accuracy was 
predicted by comparing the performance of the random forest, binary 
logistic regression, decision tree model, and the naïve Bayes model. 
When there was a split in a node, the Gini impurity was calculated in the 
descendant node. The calculated Gini impurity was less than the parent 
node. Each time a variable had a node split, the Gini impurity criterion 
was calculated for the two descendent nodes. The descendent node is 
less than the parent node. The sum of Gini decreases for each variable 
across all the trees in the forest. R version 4.3.1 was used for random 
forest analysis as a comparison to other AI models. 
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Results 

We built numerous models including a decision tree and random 
forest model in order to create a classifier. A random seed is used to 
ensure that results are reproducible. We set the seed at 100. The number 
of trees built otherwise known as ntrees is 1000 trees within the model 
that we used. We first found the minimum lambda value for entry into 
the random forest model. 

Lambda optimization 

As shown in Fig. 1, lambda is the tuning parameter that can be used 
to decide how much we want to penalize the flexibility of our model. As 
the value of λ rises, there is a reduction in the value of coefficients 
resulting in the reduction of the variance, consequently avoiding over-
fitting. The value of lambda that gives the minimum mean cross- 
validated error—a vector of length(λ) = 0.034. 

Random Forest classification 

In Fig. 2, as an example, we ran this model using Random Forest 
(RF). The Random Forest model demonstrates that in the first split, 65% 
were less than 53 years of age. Out of the previous group, 31% is female 
and 34% is not female (male). Then, for a vast majority the model 
equated to 43 years of age. The numbers in each of the leaf nodes 
represent the samples for each of the nodes. For instance, the root node 
has 120 samples. 

As seen in Fig. 3, the mean decrease in Gini impurity can be useful in 
many situations. For instance, the level of importance of each covariate 
can be determined by this impurity measure we calculated. According to 
the random forest regression findings—employment, depression, sleep 
trouble, gender, and diabetes status. 

The random forest was determined to contain lambda that also gives 
the minimum mean cross-validated error—a vector of length(lambda) is 
0.034. The Random Forest model performed better than all of the other 
models in the training dataset. According to Table 1, the random forest 
model had an accuracy of 98.4%. The other models included the null 
model which was comprised of a null binary logistic regression and had 

an accuracy of 87.8%. The decision tree classifier was 89.3% accurate. 
The generalized linear model was 87.8% accurate. Finally, the naïve 
Bayes model was 84.6%. This model is a supervised machine learning 
approach that classifies tasks. In comparison the null model (a model 
predicting the frequent class for the sample observation, classification 
accuracy of the random forest model was 98.4%. 

The results suggest that the random forest model that is being used 
only predicts the samples with 9% accuracy or number of wrongly 
classified observations, determined by the Out-of-Bag (a bootstrap ag-
gregation method) error estimate. While making the samples, data 
points were chosen randomly and with replacement, and the data points 
which fail to be a part of that sample are known as out-of-bag points. In  
Table 2, we calculated that the confusion matrix yielded 86% accuracy. 

Fig. 1. Lambda optimization for a Random Forest Model with 95% confidence intervals.  

Fig. 2. Decision tree out of the Random Forest model explaining hypertension 
(root, split, and leaf nodes). 
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Discussion 

In this study, by using real-life NHANES data, we found that among 
traditional AI models such as random forest modeling operate superior 
to other traditional machine learning techniques. Jackins et al. [10] 
found that for predicting health conditions such as diabetes, heart dis-
ease, and cancer, random forests were more accurate than Naïve Bayes. 
However, they did not compare the other machine learning models with 
Random Forest. Also, the findings in our study had used population data 
from the United States. The novel findings are that we were able to 
clearly demonstrate a relationship between physical health and mental 
health through using a unique AI model, known as Random Forest. We 
also found that using the random forest regressor model, the relative 
importance of employment was the most, as indicated by the Gini Co-
efficient. The next relatively important variables were as follows: 
depression, sleep trouble, gender, and diabetes status (in that order). 
These findings demonstrate that depression, after employment status, is 
the most important factor in predicting hypertension. Despite these 
practical applications of traditional machine learning techniques, LLM is 
expanding in leaps and bounds [9,10]. The challenge will be to under-
stand how machine learning experts can creatively combine traditional 

and generative AI to create a synthesis and improved model for the 
future, being that this is the most challenging task in medical infor-
matics. In this paper, we have revisited this question in the context of 
existing machine learning models. Due to the complex composition, a 
generalized method for classification will be needed. 

Random Forest is a popular ensemble learning method that can 
handle classification tasks effectively. Previous researchers also have 
found Random Forest to be a relatively accurate Machine Learning 
model. While LLM uses neural networks and deep learning, random 
forests use machine learning. One way to combine LLM with Random 
Forest is to train a model using LLM sentence embeddings. These sen-
tence embeddings are the numerical representations of sentences. 
Similarly, Yang et al. [11] found that using the two phases, pre-training 
and fine tuning, can be used for medical records. This technique can be 
used for collecting and abstracting data from medical charts. Then using 
state-of-the-art sentences, text, and image embeddings dataset, a 
random forest classifier can be created on the embedding vectors. The 
idea is to build combinations of multiple models created with various 
methods to combine strengths of each of the models and minimize 
weaknesses. 

The Generative Pre-Trained Transformer (GPT) models, a type of 
LLM model, are ever-changing and are being trained on a massive 
amount of text data that can be measured through a growing number of 
parameters—sometimes in the billions [11–13]. For instance, GPT-3 has 
nearly 200 billion parameters. While this is 100 times larger than GPT-2, 
and two times the neurons in the human brain, this allows for the gen-
eration of text that varies contextually. 

However, the models sometimes have unintended behaviors such as 
not following user instruction, creating facts, and generating biased text. 
One of the major uses is text prediction or predicting what are the next 
words in a text or email. Some of the limitations include the potential for 
this technology to perpetuate biases and stereotypes that comprise the 
original data. Stanford study indicates AI chatbots used by health pro-
viders are perpetuating racism. For example, misconceptions and 
falsehoods about Black patients, sometimes included fabricated, race- 
based equations [14,15]. Finally, when asked medical questions about 
kidney function, lung capacity, and skin thickness, the AI chatbot did not 
do well, posing the question of credibility. By having LLM recognize bias 
can create a more inclusive system. 

Limitations of LLM 

While Large Language Modeling is advancing at a rapid pace and has 
proven to be superior to existing AI models, numerous ethical questions 
arise. For instance, some misinformation can lead to rapid spread of 
more misinformation, perpetuating an infodemic. During the pandemic, 
we witnessed the rapid spread of misinformation leading to poor 
decision-making on the part of policymakers and individuals alike. 
Ethical considerations are so important that the European Union has 
created the European Ethical guidelines for trustworthy AI [16,17]. LLM 
can be considered a double-edged sword in that while LLM has opened 
the door to endless possibilities, one must proceed with caution. Some 
researchers have shown how rare conditions or disputed information 
often yields incorrect responses. Although known to have no connec-
tions, when asked if there is a relationship between SCN9A variants and 
epilepsy that is autosomal dominant. However, the LLM erroneously 
answered that there was a connection [6,18]. Biases emerging out of 
training models should be addressed adequately by creating machine 
learning models that can recognize biases. We must make sure that LLM 
is not accelerating disparities and perpetuating errors [19,20]. By add-
ing diverse populations in training models, biased decision-making can 
be avoided. 

Implications 

As established in this study, the rapid spread of LLM is not making 

Fig. 3. Gini Coefficient shows the relative importance of each of the variables.  

Table 1 
Accuracy of each of the machine learning models.  

Model Train accuracy Test Accuracy 

Random Forest Model 98.4% 82.6% 
Null Model (Logistic Regression) 87.8% 82.6% 
Decision Tree Model 89.3% 82.6% 
Generalized Linear Model 87.8% 82.6% 
Naïve Bayes Model 84.6% 75.8% 
Out-of-Bag Error 9%  

Table 2 
Confusion matrix of the Random Forest Model.   

No Yes Class Error 

No 1833 30  .02 
Yes 154 105  .59  

S. Banerjee et al.                                                                                                                                                                                                                                



Journal of Medicine, Surgery, and Public Health 1 (2023) 100026

5

other AI techniques obsolete. There are multiple ways that traditional 
machine learning techniques (Random Forest) can complement LLM to 
enhance the capabilities in AI. The datasets can be trained through LLM, 
then this can be applied to the Random Forest technique. LLM can be 
used for medical record abstraction regarding social determinants of 
health and summarizing charts. During decision-making, patient 
centered outcome measures can involve patients as prompted by LLM to 
create a brave new world of precision medicine. However, there are 
concerns regarding the training dataset being biased. This could nega-
tively affect healthcare-related decision making by only using a certain 
select population rather than everyone. LLM is here to stay; however, 
before embracing this technology more research is needed about the 
potential biases. For instance, by training the model untrue information, 
this perpetuates biased information. Potential racial biases are possible 
by not accurately administering race-based questions [21]. However, in 
order to mitigate bias, researchers were able to train a Bidirectional 
Encoder Representations from Transformers (BERT) model to detect 
racial bias [21,22]. By harnessing LLM technology, there will be more 
time for healthcare workers to focus on the patient rather than having to 
go through the medical record in its entirety. 

Conclusion 

In conclusion, Random Forest undergirds many of the existing ma-
chine learning models. Instead of these being completely replaced, 
systems will learn to apply the advantages of LLM. For instance, digi-
tized information such as medical records can easily be combined with 
depression screening in order to make clinical decisions based on 
random forest algorithms. As the findings from this study establish, 
depression relates to physical health. LLM can also be used to have a 
thorough understanding about rare diseases and potential genetic, 
phenotypic, and epigenetic research. The Electronic Health Records can 
be used to abstract information, predict 30-day readmissions, reduce 
lengths of stay in the hospital, and understand in-patient mortality using 
less training data in LLM. LLM and deep learning can enhance radiology 
imaging such as critical findings on an MRI. The purpose of LLM is to not 
to replace clinical judgment, but to augment judgment [23–25]. After 
all, allowing each technology to do what it does best should be the goal 
of optimal AI usage and application. 
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